A Novel Wireless Passive Temperature-Pressure SAW-based Sensor
DOI:
Author:
Affiliation:

Science and Technology on Electronic Test and Measurement Laboratory, North University of China, Taiyuan 030051 ;
Key Laboratory of Instrumentation Science and Dynamic Measurement, Ministry of Education, North University of China, Taiyuan 030051

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    A novel wireless and passive surface acoustic wave (SAW) sensor is developed for measuring temperature and pressure. The sensor has two single-port resonators on a substrate. One resonator, acting as the temperature sensor, is located at the fixed end without pressure deformation, and the other one, acting as the pressure sensor, is located at the free end to detect pressure changes due to substrate deformation. Pressure at the free end bends the cantilever, causing a relative change in the acoustic propagation characteristics of the SAW traveling along the surface of the substrate and a relative change in the resonant frequency of the resulting signal. The temperature acts on the entire substrate, affecting the propagation speed of the SAW on the substrate and directly affecting the resonant frequency characteristic parameters. The temperature and pressure performance of this new antenna-connected sensor is tested by using a network analyzer, a constant temperature heating station, and a force gauge. A temperature sensitivity of 1.5015 kHz/°C and a pressure sensitivity of 10.6 kHz/gf at the ambient temperature have been observed by wireless measurements. This work should result in practical engineering applications for high-temperature devices.

    Reference
    Related
    Cited by
Get Citation

Liwei ZHANG, Tao GUO, Qiulin TAN, Yongwei ZHANG, Tianhao ZHOU.[J]. Instrumentation,2019,6(1):109-115

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:
  • Revised:
  • Adopted:
  • Online: October 29,2020
  • Published:
License
  • Copyright (c) 2023 by the authors. This work is licensed under a Creative
  • Creative Commons Attribution-ShareAlike 4.0 International License.